## Ligand-Free Ag(I)-Catalyzed Carboxylation of Terminal Alkynes with  $CO<sub>2</sub>$

**LETTERS** 2011 Vol. 13, No. 9 2402–2405

ORGANIC

## Xiao Zhang, Wen-Zhen Zhang,\* Xiang Ren, Lin-Lin Zhang, and Xiao-Bing Lu\*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

zhangwz@dlut.edu.cn; lxb-1999@163.com

## Received March 10, 2011



A convenient approach to selectively prepare a wide range of functionalized propiolic acids was developed by AgI-catalyzed carboxylation of terminal alkynes using carbon dioxide as carboxylative agent under ligand-free conditions.

The development of efficient catalytic processes for  $CO<sub>2</sub>$ transformation into useful fine chemicals is of great interest and has been a long-standing goal for chemists, since  $CO<sub>2</sub>$  is an abundant, inexpensive, and renewable C1 feedstock.<sup>1</sup> One of the most promising reactions in this field is the direct carboxylation of organic compounds with  $CO<sub>2</sub>$  to afford carboxylic acids and derivatives. Although the direct carboxylation of highly reactive organolithium and Grignard reagents with  $CO<sub>2</sub>$  can be easily carried out, it is impossible to synthesize functionalized carboxylic acids. On the contrary, transition-metal-catalyzed carboxylation of less reactive carbon<sup>2-4</sup> and other nucleophiles<sup>5</sup>

<sup>(1) (</sup>a) Louie, J. Curr. Org. Chem. 2005, 9, 605. (b) Mori, M. Eur. J. Org. Chem. 2007, 4981. (c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (d) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975. (e) Correa, A.; Martin, R. Angew. Chem., Int. Ed. 2009, 48, 6201. (f) Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH: Weinheim, 2010. (g) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347. (h) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011 doi:10.1039/c0cs00129e.

<sup>(2)</sup> For carboxylation of organotin reagents with  $CO<sub>2</sub>$ , see: (a) Shi, M.; Nicholas, K. M. *J. Am. Chem. Soc.* 1997, 119, 5057. (b) Franks, R. J.; Nicholas, K. M. Organometallics 2000, 19, 1458. (c) Johansson, R.; Wendt, O. F. *Dalton Trans.* 2007, 488. (d) Wu, J.-G.; Hazari, N. *Chem.* Commun. 2011, 47, 1069.

<sup>(3)</sup> For carboxylation of organoboron reagent with  $CO<sub>2</sub>$ , see: (a) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 8706. (b) Takaya, J.; Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10, 2697. (c) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792. (d) Ohmiya, H.; Tanabe, M.; Sawamura, M. Org. Lett. 2011, 13, 1086.

<sup>(4)</sup> For carboxylation of organozinc reagents with  $CO_2$ , see: (a) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826. (b) Ochiai, H.; Jang, M.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 2681. (c) Kobayashi, K.; Kondo, Y. Org. Lett. 2009, 11, 2035.

<sup>(5)</sup> For examples on transition-metal-catalyzed carboxylation of other nucleophiles with CO<sub>2</sub>, see: (a) Greco, G. E.; Gleason, B. L.; Lowery, T. A.; Kier, M. J.; Hollander, L. B.; Gibbs, S. A.; Worthy, A. D. Org. Lett. 2007, 9, 3817. (b) Aoki, M.; Izumi, S.; Kaneko, M.; Ukai, K.; Takaya, J.; Iwasawa, N. Org. Lett. 2007, 9, 1251. (c) Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936. (d) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254. (e) Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974. (f) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188. (g) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. (h) Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2011, 50, 523. (i) Fukue, Y.; Oi, S.; Inoue, Y. J. Chem. Soc., Chem. Commun. 1994, 2091. (j) Eghbali, N.; Eddy, J.; Anastas, P. T. J. Org. Chem. 2008, 73, 6932. (k) Yooa, W.-J.; Li, C.-J. *Adv. Synth. Catal.* **2008**, 350, 1503. (l) Lu, X.-B.; Liang, B.; Zhang, Y.-J.; Tian, Y.-Z.; Wang, Y.-M.; Bai, C.-X.; Wang, H.; Zhang, R. J. Am. Chem. Soc. 2004, 126, 3732. (m) Zhang, X.; Jia, Y.-B.; Lu, X.-B.; Li, B.; Wang, H.; Sun, L.-C. Tetrahedron Lett. 2008, 49, 6589. (n) Ren, W.-M.; Liu, Z.-W.;Wen, Y.-Q.; Zhang, R.; Lu, X.-B. J. Am. Chem. Soc. 2009, 131, 11509. (o) Ebert, G. W.; Juda,W. L.; Kosakowski, R. H.; Ma, B.; Dong, L.; Cummings, K. E.; Phelps, M. V. B.; Mostafa, A. E.; Luo, J. J. Org. Chem. 2005, 70, 4314.

<sup>(6)</sup> For examples on transition-metal-free incorporation of  $CO<sub>2</sub>$ , see: (a) Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2006, 128, 11040. (b) Yoshida, H.; Morishita, T.; Ohshita, J. Org. Lett. 2008, 10, 3845. (c) Zhou, H.; Zhang, W.-Z.; Liu, C.-H.; Qu, J.-P.; Lu, X.-B. J. Org. Chem. 2008, 73, 8039. (d) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322. (e) Kayaki, Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 4194. (f) Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900. (g) Chen, G.; Fu, C.; Ma, S. Org. Biomol. Chem. 2011, 9, 105. (h) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12, 3567. (i) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. (j) Minakata, S.; Sasaki, I.; Ide, T. Angew. Chem., Int. Ed. 2010, 49, 1309. (k) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.

with CO<sub>2</sub>, which shows highly catalytic efficiency, broad substrate scope, and good applicability, offers an attractive access to various functionalized carboxylic acids and derivatives.<sup>6</sup> Recently, a more economical method was reported with regard to copper- or gold-catalyzed direct carboxylation of relatively active C-H bonds with  $CO<sub>2</sub>$ . However, because of the inherently thermodynamical and kinetical stability of  $CO<sub>2</sub>$ , the above-mentioned catalytic reactions usually encounter the use of high-energy organometallic reagents or rather rigorous reaction conditions. Furthermore, those transition-metal-catalyzed carboxylation reactions inevitably use expensive or complex ligands to guarantee selectivity and catalytic efficiency. Therefore, the development of a simple and efficient catalytic system for the direct carboxylation reaction using  $CO<sub>2</sub>$  under mild condition is highly desirable.

Scheme 1. Carboxylative Coupling and Direct Carboxylation of Teminal Alkynes Using CO<sub>2</sub>



Recently, we developed a highly selective copper-catalyzed carboxylative coupling reaction of terminal alkynes, allylic chlorides, and  $CO_2$ ,<sup>8</sup> wherein  $CO_2$  could rapidly insert into a sp-hybridized carbon-copper bond and formed copper(I) carboxylate intermediate then reacted with allylic chloride compounds to afford allylic 2-alkynoates. We envisioned that with judicious choice of catalyst and base, various functionalized propiolic acids<sup>9</sup> could be conveniently prepared by the direct carboxylation of terminal alkynes with  $CO<sub>2</sub>$  via the acidification of the formed metal propiolate (Scheme 1). This straightforward strategy has obvious advantages over traditional accesses to propiolic

Lett. 2010, 12, 4748.

acids such as carboxylation of air- and moisture-sensitive alkynylmagnesium or -lithium reagents, oxidation of propargylic alcohols or aldehydes, and hydrolysis of corresponding derivatives.<sup>10</sup> More recently, Goossen and Zhang reported nitrogen or N-heterocyclic carbene ligand-assisted copper-catalyzed direct carboxylation of terminal alkynes with  $CO_2$ .<sup>11</sup> Herein, we report a convenient ligand-free silver-catalyzed direct carboxylation of terminal alkynes using  $CO<sub>2</sub>$  as carboxylative agent affording a variety of functionalized propiolic acids.







<sup>a</sup> Reaction conditions: **1a** (2 mmol), base (3 mmol), 20 mL of DMF.<br><sup>b</sup> Isolated yield. <sup>c</sup> 1.5 MPa, 24 h. <sup>d</sup> 60 °C. <sup>e</sup> CO<sub>2</sub> was bubbled into the reaction system.  $f$  In the absence of CO<sub>2</sub>.  $g$  In the presence of 1 mol % of PPh<sub>3</sub>.  $h$  In the presence of 1 mol % of PCy<sub>3</sub>.

Initial investigations of direct carboxylation of phenylacetylene  $(1a)$  with  $CO<sub>2</sub>$  were carried out to screen the optimized reaction conditions (Table 1). The catalytic system used in the previous carboxylative coupling reaction (10 mol % of (IPr)CuCl as catalyst and  $K_2CO_3$  as base) gave a poor but encouraging yield of 39% for phenylpropiolic acid (2a) formation (entry 1). Surprisingly, a slightly improved yield was obtained when 20 mol % of CuI was used as catalyst (entry 3). Hu disclosed that  $Cs_2CO_3$  was a superior base for the direct

<sup>(7) (</sup>a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. (b) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Angew. Chem., Int. Ed. 2010, 49, 8674. (c) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670. (d) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021. (e) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 1251. (8) Zhang, W.-Z.; Li, W.-J.; Zhang, X.; Zhou, H.; Lu, X.-B. Org.

<sup>(9) (</sup>a) Donets, P.; Van der Eycken, E. V. Org. Lett. 2007, 9, 3017. (b) Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma, X.-T.; Cheng, D.-J.; Li, N.; Tian, S.-K. Org. Lett. 2010, 12, 3832. (c) Bararjanian, M.; Balalaie, S.; Rominger, F.; Movassagh, B.; Bijanzadeh, H. R. J. Org. Chem. 2010, 75, 2806. (d)Moon, J.; Jeong,M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H.M.; Lee, S. Org. Lett. 2008, 10, 945. (e) Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000. (f) Feng, C.; Loh, T.-P. Chem. Commun. 2010, 46, 4779. (g) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee., S. J. Org. Chem. 2010, 75, 6244. (h) Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134.

<sup>(10) (</sup>a) Lyons, T. W.; Sanford, M. S. Tetrahedron 2009, 65, 3211. (b) Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. *J. Org. Chem.* 1999, 64, 2564. (c) Lee, A. S.-Y.; Hu, Y.-J.; Chu, S.-F. *Tetrahedron* 2001, 57, 2121. (d) Koster, F.; Dinjus, E.; Dunach, E. Eur. J. Org. Chem. 2001, 2507.

<sup>(11)</sup> During preparation of this manuscript, similar ligand-assisted Cu(I)-catalyzed reactions were reported: (a) Goosen, L. J.; Rodriguez, N.; Manjolinho, F.; Lange, P. P. Adv. Synth. Catal. 2010, 352, 2912. (b) Yu, D.; Zhang, Y. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20184.

carboxylation of aromatic heterocycles with  $CO<sub>2</sub>$ .<sup>6f</sup> Base also plays an important role in the catalyst systems. When the base was changed into  $Cs_2CO_3$ , moderate yield was achieved at the decreased temperature (entry 4). It is wellknown that besides copper(I) catalyst, silver(I) salt and complexes were also established as powerful catalysts for alkynylation reaction.<sup>12,13</sup> It was found that 20 mol  $\%$  of AgI as catalyst without any ligand together with  $Cs_2CO_3$ gave 83% yield of 2a (entry 6). To our surprise, an excellent yield  $(94\%)$  of 2a was obtained using 1 mol % loading of AgI (entry 7). The increased catalyst loading resulting in the lower yield of product might be tentatively ascribed to the decarboxylative activity of  $Cu(I)$  or  $Ag(I)$  salt (entries 4 and 6).<sup>14,15</sup> Notably, the catalyst system proved to be efficient even in a very low catalyst loading of 0.1 mol  $\%$  (entry 8) and/ or at a low  $CO<sub>2</sub>$  pressure of bubbling  $CO<sub>2</sub>$  into the reaction system (entry 9). It is noteworthy that the reaction with 1.5 equiv  $Cs_2CO_3$  without any transition-metal catalyst afforded only 6% yield of product (entry 10). These clearly certified the catalytic role of copper $(I)$  and silver $(I)$  salt.

The catalytic activities of various simple silver(I) salts were also tested at the same conditions. These silver(I) salts all exhibited moderate to high activity (entries  $11-19$ ). Among them,  $AgPF_6$  is more efficient in catalyzing this reaction (entry 19). In view of the complicated manipulation of hygroscopic  $AgPF_6$ , we chose AgI as catalyst in subsequent investigations.



Figure 1. <sup>13</sup>C NMR spectrum of <sup>13</sup>C<sub>carbonyl</sub>-labeled phenylpropiolic acid  $(2a')$ .

When KO'Bu was used as base, the carboxylation reaction afforded 59% yield of 2a (entry 20). It is worthwhile noting here that no carboxylation product was observed when the reaction proceeded in the absence of  $CO<sub>2</sub>$  (entry 21). When phenylacetylene reacted with <sup>13</sup>C-labeled CO<sub>2</sub>, <sup>13</sup>C<sub>carbonyl</sub>-labeled phenylpropiolic acid  $(2a')$  was obtained in excellent yield (Figure 1 and Supporting Information). These results demonstrated that the  $CO<sub>2</sub>$ unit in carboxylation product came from free  $CO<sub>2</sub>$ , rather than carbonate salts.

Interestingly, the addition of a ligand has a negative effect on catalyst activity (entries 22 and 23). For example, the presence of 1 mol  $\%$  of PCy<sub>3</sub> resulted in an obvious decrease of the yield from 94% to 79% (entry 23).

The scope with respect to terminal alkyne substrates was then explored under the optimized reaction conditions:







<sup>a</sup> Reaction conditions:  $1(2 \text{ mmol})$ ,  $20 \text{ mL of DMF}$ . <sup>b</sup> Isolated yield. <sup>c</sup> 24 h.

1 mol % of AgI, 1.5 equiv of  $Cs_2CO_3$ , 0.2 MPa  $CO_2$ , DMF, 50 °C. As shown in Table 2, various aryl- and alkylsubstituted terminal alkynes smoothly underwent the carboxylation reaction and were converted into the corresponding propiolic acids in moderate to excellent yield. Scheme 2. Possible Reaction Mechanism



Both electron-donating and electron-withdrawing group substituted phenylacetylenes were successfully carboxylated with  $CO<sub>2</sub>$  (entries 1–11). The reactions were compatible with aryl-OMe, OH, F,  $CF_3$ , Br, Cl, and NO<sub>2</sub> groups.

Ethyl propiolate bearing an ester group was also found to be a suitable substrate (entry 12). A variety of alkyl-substituted terminal alkynes could be carboxylated, and phenyl ether, cyclopropane, and cyclopentane groups were tolerable (entries  $13-22$ ). Thus, this ligand-free Ag(I)-catalyzed direct carboxylative approach showed wide generality for the synthesis of various functionalized propiolic acids.

(13) For examples on silver-catalyzed incorporation of  $CO<sub>2</sub>$ , see: (a) Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.; Yamada, T. Eur. J. Org. Chem. 2007, 2604. (b) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem. Soc. 2010, 132, 4072.

(14) Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.

(15) For recent examples on silver-mediated decarboxylation reaction, see: (a) Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009, 11, 5710. (b) Goossen, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm, A. Chem. Commun. 2009, 7173. (c) Cornella, J.; Sanchez, C.; Banawa, D.; Larrosa, I. Chem. Commun. 2009, 7176. (d) Goossen, L. J.; Lange, P. P.; Rodriguez, N.; Linder, C. Chem.--Eur. J. 2010, 16, 3906. (e) Zhang, M.; Zhou, J.; Kan, J.; Wang, M.; Su, W.; Hong, M. Chem. Commun. 2010, 46, 5455. (f) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006.

To probe the mechanistic aspects, silver phenylacetylide and silver phenylpropiolate were prepared and directly used as catalyst (1 mol % loading) for the carboxylation of phenylacetylene, and 80% and 86% yields of phenylpropiolic acid were obtained, respectively. On the basis of the above experimental results, a possible catalytic cycle for the Ag(I)-catalyzed direct carboxylation of terminal alkynes with  $CO<sub>2</sub>$  is proposed as shown in Scheme 2. First, terminal alkyne coordinates to the silver(I) salt and the acidity of the alkyne  $C-H$  bond is enhanced. Then the deprotonation reaction of terminal alkyne by  $Cs_2CO_3$ eventually affords silver(I) acetylide I, which is generally proposed as key intermediate in the silver(I)-catalyzed alkynylation reaction<sup>12</sup> and silver-cocatalyzed Sonogashira reaction.<sup>16</sup> The insertion of  $CO<sub>2</sub>$  into sp-hybridized carbonsilver bond forms silver propiolate intermediate II, which subsequently reacts with another terminal alkyne and  $Cs<sub>2</sub>CO<sub>3</sub>$ releasing cesium propiolate, meanwhile regenerating silver(I) acetylide I. The acidification of cesium propiolate after reaction affords propiolic acid product.

In summary, we have developed a ligand-free Ag(I) catalyzed direct carboxylation of terminal alkynes with CO2, which represents a convenient method to straightforwardly synthesize functionalized propiolic acids in good yield. Further exploration of these in situ generated silver propiolate as nucleophiles for building new organic compounds is in progress in our laboratory.

Acknowledgment. This work is supported by National Natural Science Foundation of China (Grant 20802007) and National Basic Research Program of China (973Program: 2009CB825300).

Supporting Information Available. Experimental procedure and characterization of products. This material is available free of charge via the Internet at http://pubs.acs. org.

(16) For reviews, see: Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874.

<sup>(12) (</sup>a) Wei, C. M.; Li, Z. G.; Li, C.-J. Org. Lett. 2003, 5, 4473. (b) Yao, X.; Li, C.-J. Org. Lett. 2005, 7, 4395. (c) Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675. (d) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903. (e) Maggi, R.; Bello, A.; Oro, C.; Sartori, G.; Soldi, L. Tetrahedron 2008, 64, 1435. (f) Yu, M.; Skouta, R.; Zhou, L.; Jiang, H.-F.; Yao, X.; Li, C.-J. J. Org. Chem. 2009, 74, 3378. (g) Li, C.-J. Acc. Chem. Res. 2010, 43, 581.